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 Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycemia. Current therapeutic 
strategies primarily manage symptoms, leaving a substantial unmet need for curative interventions. This review explores 
the potential of CRISPR-dCas9-mediated CpG island editing as a promising therapeutic approach for T2DM. CpG islands, 
DNA regions enriched in cytosine-guanine dinucleotides, play a pivotal role in gene regulation. Their methylation status 
significantly influences gene expression. By targeting specific CpG islands within genes involved in glucose metabolism 
and insulin signaling, CRISPR-dCas9 can modulate gene expression and restore metabolic homeostasis. A particular focus 
is placed on the TXNIP gene, implicated in T2D pathogenesis. Reprogramming TXNIP expression using CRISPR-dCas9 
offers potential therapeutic benefits, including protecting pancreatic beta cells, enhancing insulin sensitivity, and 
mitigating inflammation. While the potential of CRISPR-dCas9-mediated CpG island editing is clear and evident now, 
further steps are imperative to translate this approach into effective and safe therapies for T2DM patients. 
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1. Introduction 
Advances in epigenetic editing technology have paved the way for 
novel therapeutic approaches in various diseases, including diabetes. 
One promising approach is the CRISPR-dCas9-mediated editing of 
CpG islands, which could potentially target gene expression through 
epigenetic modifications. This review explores the role of CpG islands, 
their involvement in gene regulation, and how CRISPR-dCas9 can be 
used to edit these regions for potential diabetes treatment, focusing 
specifically on the TXNIP gene. 

CpG islands are short stretches of DNA that are densely packed 
with cytosine-guanine (CpG) dinucleotides. They are commonly found 
near gene promoters, playing a critical role in gene regulation due to 
their influence on transcriptional activity (Bird et al., 1985; Bird, 
1986). The unique feature of CpG islands is their high CpG density, 
their largely unmethylated state, and their strong association with 
active gene promoters (Gardiner-Garden and Frommer, 1987). 
Methylation of CpG islands, however, can lead to transcriptional 
silencing, making these regions key targets in epigenetic regulation. 

Several computational tools have been developed to identify CpG 
islands within genomic sequences, including CpG Island Searcher, 
IslandPicker, and PromoterScan (Deaton and Bird, 2011). These tools 
use algorithms that search for high CpG density, appropriate 
sequence length, high GC content, and an observed/expected CpG 
ratio greater than a specific threshold (Choy et al., 2010). These 
features are essential for accurate identification and analysis of CpG 
islands, particularly in their role in regulating gene expression. 

DNA methylation, the addition of methyl groups to the cytosine  
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base in CpG dinucleotides, is a powerful epigenetic modification that 
silences gene expression when it occurs in gene promoters (Lee and 
Lee, 2012). Methylation interferes with transcription factor binding 
and recruits proteins that compact chromatin, thus reducing gene 
expression. Conversely, unmethylated CpG islands are typically 
associated with actively transcribed genes (Lee et al., 2015; Yoo et 
al., 2021). Factors influencing CpG island methylation include DNA 
methyltransferases (DNMTs), Ten-Eleven Translocation (TET) 
enzymes, chromatin accessibility, and environmental conditions. 

In Dutta et al. (2005), identified a CpG island within the TXNIP 
gene's promoter region. This CpG Island, rich in cytosine and guanine 
dinucleotides, is a common target for epigenetic modifications, 
particularly DNA methylation. DNA methylation, the addition of a 
methyl group to cytosine residues in CpG dinucleotides, typically 
silences gene expression by hindering transcription factor binding or 
promoting chromatin compaction. Aberrant methylation patterns are 
implicated in various diseases, including diabetes. 

Dutta et al. (2005) pioneered the discovery that hypermethylation 
of this CpG island correlates with decreased TXNIP expression in 
kidney cancers. Conversely, under normal conditions, the CpG Island 
is typically hypomethylated, leading to increased TXNIP levels. This 
dynamic regulation is essential for maintaining balanced cellular 
proliferation in both normal and cancerous kidney tissues (Dutta et 
al., 2005; Kim et al., 2021; Zhang et al., 2017). 

A similar methylation pattern is observed in diabetic conditions. 
Hypomethylation of TXNIP correlates with elevated expression and 
disrupted glucose homeostasis (Zhang et al., 2017; Kim et al., 2021). 

The methylation status of the cg19693031 site within the TXNIP 
gene has been linked to fasting blood glucose regulation in non-
diabetic Taiwanese adults (Tsai et al., 2022). The relationship 
between TXNIP-cg19693031 DNA methylation (DNAm) and type 2 
diabetes (T2D) is well-established, with strong correlations to HbA1c, 
insulin, and fasting glucose levels (Tsai et al., 2022). Hypomethylation 
at TXNIP-cg19693031 has been robustly associated with T2D, as well 
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as elevated inflammatory biomarkers including VCAM-1, ICAM-1, 
MMP-2, sRAGE, and P-selectin. Notably, the connection between 
TXNIP-cg19693031 methylation and T2D persists independently of 
these inflammatory biomarkers (Xiang et al., 2021). 

Further studies have also demonstrated a marked decrease in 
methylation across five TXNIP loci in individuals with T2D compared 
to healthy controls, where increasing methylation levels correspond 
to a reduced T2D risk. Interactions among TXNIP methylation, 
obesity, and hypertriglyceridemia were identified as contributing 
factors to T2D onset (Zhang et al., 2020). 

Recent research has expanded on these findings, investigating 
how TXNIP methylation influences T2D risk in detail (Wu et al., 2024; 
Maeda et al., 2024). Two pivotal studies illustrate these associations, 
Wu et al. (2024) and Maeda et al. (2024) provide complementary 
insights into the role of TXNIP DNA methylation in type 2 diabetes 
(T2D) risk and glycemic regulation. Wu et al. (2024) in a nested case-
control study, reported that higher methylation levels at TXNIP CpG 
sites 2–5 were associated with a 61–87% reduction in T2D risk, 
highlighting the protective potential of hypermethylation in this 
region. Similarly, Maeda et al. (2024) in a longitudinal study, found 
that hypomethylation at cg19693031 was linked to greater increases 
in fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) over 
four years, suggesting that hypomethylation may impair glucose 
regulation and serve as an early marker of diabetes risk. Together, 
these findings underscore the importance of TXNIP methylation in 
diabetes pathogenesis and risk prediction. 
 

2. CRISPR-Cas technology for editing CpG methylation 
The discovery of CRISPR-Cas9 system has opened the door and 
revolutionized genome editing (Doudna and Charpentier, 2014). The 
catalytically inactive form of dCas9 allows for precise epigenetic 
editing without altering DNA sequences. By fusing dCas9 to 
epigenetic effectors like methyltransferases or demethylases, 
scientists can manipulate CpG island methylation. This offers a 
potential therapeutic avenue for diseases such as diabetes, where 
aberrant CpG island methylation affects key genes like TXNIP. 
 

Table 1. A timeline highlighting the key developments in the area of 
CRISPR-dCas9 Mediated CpG island methylation and 
demethylation. 

Year Key milestones and contributions 

2013 CRISPR/Cas9 repurposed for targeted epigenetic modifications using dCas9 (Mali et 
al., 2013; Maeder et al., 2013). 

2014 dCas9 fused with transcriptional regulators to control gene expression without DNA 
sequence alteration (Gilbert et al., 2014). 

2015 CRISPR/dCas9 fused with DNMT3A for site-specific CpG methylation, silencing 
genes, particularly in cancer research (Hilton et al., 2015). 

2016 Enhanced DNA methylation with dCas9 and multiple effectors, expanding 
applications in cancer research and stem cell differentiation (Xu et al., 2016). 

2017 dCas9 fused with TET1 for site-specific CpG methylation, reactivating silenced 
genes (Stepper et al., 2017). 

2018 Precise demethylation in endogenous genes, advancing research in 
neurodevelopmental disorders and cancer (Liu et al., 2018) 

2019 Enhanced specificity with dual-function dCas9 constructs for bidirectional CpG 
methylation control (Josipović et al., 2019). 

2020 Multiplexed control of multiple CpG islands, enabling studies of complex gene 
networks (McCarty et al., 2020). 

2021 Development of tools for fine-tuned methylation/demethylation with therapeutic 
potential in diseases involving aberrant methylation (Sapozhnikov et al., 2021). 

2022 Preclinical applications in neurological diseases and cancer; modulation of tumor 
suppressor genes using dCas9-methylation tools (Chen et al., 2022). 

2023 Focus on safer in vivo systems for targeted methylation and demethylation, 
addressing off-target effects (Vojta et al., 2023). 

 

3. Current research and future directions 
Today, CRISPR/dCas9-based CpG island methylation and 
demethylation are being explored for treating diseases related to 
epigenetic dysregulation, such as cancer, neurological disorders, and 
metabolic diseases. Challenges remain in optimizing delivery, 
minimizing off-target effects, and achieving long-term, stable 
modifications (Cano-Rodriguez and Rots, 2016). 
 
 

3.1 In Vivo examples of CRISPR-dCas9 mediated epigenetic 
editing 
CRISPR/dCas9-mediated CpG island methylation and demethylation 
in vivo have shown potential in animal models for understanding gene 
regulation and exploring therapeutic applications. Some prominent 
examples are presented in Table 2.  
 

Table 2. Key in vivo applications of CRISPR-dCas9-mediated epigenetic 
editing. 

Target/Application Study Key findings Significance 

Targeting 
tumor/cancer related  
genes in cancer 
models 

Braun et 
al. (2016) 

Used CRISPR/dCas9 to 
activate and inactivate the 
cancer related genes in 
mice. 

Demonstrated the 
potential to regulate 
the cancer related 
genes in vivo. 

Manipulating 
memory-related 
genes in the brain 

Liu et al. 
(2016) 

A CRISPR/dCas9-TET1 
fusion methylated CpG 
islands in the promoters of 
Bdnf in the adult mouse 
hippocampus. This 
increased expression of 
these genes, critical for 
memory formation and 
synaptic plasticity. 

Showed that targeted 
demethylation can 
enhance gene 
expression in specific 
brain regions, 
suggesting potential 
treatments for 
neurodegenerative 
diseases or cognitive 
disorders. 

Gene reactivation Liu et al. 
(2018) 

Used CRISPR/dCas9-TET1 
to demethylate the FMR1 
gene promoter in a Fragile 
X syndrome mouse model, 
leading to gene 
reactivation and partial 
phenotypic rescue. 

Showcased the 
potential to treat 
genetic disorders 
characterized by 
epigenetic silencing. 

Metabolism related 
gene targeting 

Hanzawa 
et al. 
(2020) 

Used CRISPR/dCas9- 
TET1CD and 
CRISPR/dCas9- SunTag to 
demethylate Fgf21 
promoter both in vitro and 
in vivo. 

Demonstrated the 
ability to edit 
metabolism related 
gene promoter 
through targeted 
epigenetic 
modifications. 

Targeted repression 
of oncogenes in liver 
cancer 

Senapedis 
et al. 
(2024) 

CRISPR/dCas9-DNMT3A 
methylated CpG islands in 
the Myc promoter in a 
hepatocellular carcinoma 
mouse model. This 
reduced Myc expression, 
slowed tumor growth, and 
improved survival rates. 

Demonstrated that 
targeted CpG 
methylation in 
oncogenes can 
suppress tumor 
growth, offering a 
potential therapeutic 
strategy for cancers 
with specific gene 
overexpression. 

Epigenetic reversal of 
age-related memory 
decline 

Swiech et 
al. (2015) 

Used CRISPR/dCas9-TET1 
to demethylate genes 
involved in synaptic 
plasticity in aged mice, 
improving cognitive 
function. 

Showcased the 
potential to reverse 
age-related epigenetic 
changes and improve 
cognitive function. 

Alzheimer's disease Park et 
al. (2022) 

Reduced expression of 
full-length APP and C99 in 
the DG of mouse brain. 

Demonstrated the 
potential of CRISPR-
dCas9-mediated 
epigenetic editing to 
target specific genes 
involved in Alzheimer's 
disease and reduce 
disease-related 
proteins. 

 
4. CRISPR-dCas9-mediated reprogramming of TXNIP 

expression. 
The CRISPR-dCas9 system can be leveraged to reprogram TXNIP 
expression by modifying its CpG island methylation status. For 
instance, CRISPR-dCas9-KRAB has been used to downregulate TXNIP 
by silencing its promoter region, reducing oxidative stress and 
improving glucose homeostasis. Alternatively, CRISPR-dCas9-TET1 
can reprogram hypermethylated CpG islands in the TXNIP gene, 
leading to decreased TXNIP expression and improved insulin 
sensitivity. 
 
5. Therapeutic potential of TXNIP reprogramming in 

diabetes 
The ability to modulate TXNIP expression using CRISPR-dCas9 offers 
several therapeutic benefits for diabetes management. These include, 
-Protecting pancreatic beta cells from apoptosis and oxidative stress. 
-Improving insulin sensitivity in peripheral tissues. 
-Enhancing glucose uptake and glycemic control. 
-Reducing systemic inflammation associated with diabetes. 
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6. Conclusions 
CRISPR-dCas9-mediated CpG island editing represents a novel and 
promising approach for diabetes treatment. By targeting key genes 
such as TXNIP, this technology has the potential to reverse 
hyperglycemia, enhance insulin sensitivity, and protect beta cells. 
While the potential is immense, further research is required to explore 
its therapeutic efficacy and address safety concerns. 
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